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ft feet 0.305 meters m 
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APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
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m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2
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EXECUTIVE SUMMARY 
 

With the increased rate of major weather and climate disasters occurrences in the US, the need for 

effective means to assess the damage and aid first responders and recovery teams has become 

imminent. Part of the cost incurred in such events is due to damage assessment and cleanup efforts. 

These efforts are usually handled manually by state and federal ground teams. Therefore, there is 

a growing need to develop an automated damage assessment process to streamline disaster 

preparedness, response, and recovery operations. Disaster management teams can optimize their 

recovery efforts by having access to real-time transportation network status information made 

possible through such a system. Additionally, such information can help federal agencies, such as 

Federal Emergency Management Agency (FEMA), provide the needed aid to the devastated areas.  

 

This project aims to develop and implement an automated Unmanned Aerial Vehicle (UAV) based 

damage assessment system. The newly developed system utilizes image processing and deep 

learning techniques to classify objects and assess damage to the state’s transportation system. The 

assessed damages are automatically geo-tagged to an ArcGIS map compatible with the Georgia 

Department of Transportation (GDOT) geographic information system (GIS) standards. The geo-

tagged maps are used by damage assessment, response, and recovery teams to optimize their 

efforts, especially regarding the restoration of the state transportation system within the devastated 

areas. Also, the system provides the damage assessment team with a list summarizing all damages 

that were assessed and their geographical locations. Moreover, this system provided live streaming 

of the UAV’s video feed to a Real-Time Messaging Protocol (RTMP) server, enabling the first 

responders to assess the damage. 
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To develop this system, a detailed comparative analysis of some of the leading commercial and 

industrial UAV platforms was conducted. As a result of this analysis, the final UAV platform 

recommendation for this project is the DJI Matrice 300 RTK. A customized graphical user 

interface (GUI) application was developed using Python and MATLAB software to automate and 

centralize the operation of the system. The application included managing, sampling, classifying, 

and ArcGIS map tagging of the UAV-generated video streams. This application also provided 

some flexibility to customize the operating settings of the system. 

 

Due to the particular nature of this application, field tests were not viable. Therefore, the system 

was extensively tested using a compiled library of images captured from previous natural disasters. 

The image library was classified into six categories: damaged roads, clear roads, blocked roads, 

boats in roads, fallen power lines, and flooded roads. A total of three different convolutional neural 

network (CNN) (AlexNet, GoogLeNet, ResNet50) classifiers were investigated after applying 

transfer learning and utilizing four-fold cross-validation. AlexNet achieved the highest accuracy 

of 74.1%. Even though AlexNet produced the highest accuracy in this experiment, the more 

complex CNNs, such as GoogLeNet and ResNet50, would have provided much higher 

classification accuracies given larger training and testing datasets. 

 

This project has produced the following outcomes: 

● A comparative analysis of different UAV platforms. 

● The design for the overall system with the hardware and software specifications detailed. 

● A library of aerial images. 

● A report on the classifier architecture and the performance of the classifier developed. 
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CHAPTER 1. INTRODUCTION 
 

BACKGROUND 

Major weather and climate disasters have been challenging our preparedness and ability to handle 

such events for centuries. However, in recent years, the rate of natural disasters, such as hurricanes 

and tropical storms, has significantly increased, primarily in the south and southeast regions of the 

United States (US). The US National Oceanic and Atmospheric Administration (NOAA) tracks 

and analyzes large-scale weather and climate disasters, focusing on those that result in over a 

billion dollars in economic impact. Based on NOAA’s analysis of the impact of billion-dollar 

weather and climate disasters over the last four decades (period 1980–2020), the United States 

sustained 290 weather and climate disasters (with an average of 7.1 events per year) since 1980. 

Each event's average damage/costs reached or exceeded $1 billion (including CPI adjustment). 

The total cost of these 290 events exceeded $1.95 trillion.(1) To visualize the significant increase 

in these events over the last four decades, refer to Figures 1 and 2. Figures 1 and 2 illustrate the 

average annual occurrences and the average annual cost of billion-dollar weather-related disasters 

over periods of 10 years and compare these to the average annual occurrences and the average 

annual cost over the last five years (2016–2020) and also last year 2020. It is worth noting that the 

average annual occurrences increased from 2.9 events/year with an average cost of $18.44B/year 

for the period 1980–1989 to 16.2 events/year with an average cost of $126B/year for the period 

2016–2020.(1)  
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Figure 1. Chart. Average annual occurrences of billion-dollar weather-related disasters. 

 

Figure 2. Chart. Average annual cost of billion-dollar weather-related disasters (including 
CPI adjustment). 

To put things into perspective, the year 2020 set a new annual record of 22 events (with a cost of 

$98.9 billion). Figure 3 illustrates the location of 22 different billion-dollar weather-related 
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disasters that impacted the United States during 2020.(1) The total cost due to weather-related 

disasters in 2020 was $98.9 billion. This year was also the sixth consecutive year (2015–2020) in 

which ten or more billion-dollar weather and climate disaster events have impacted the United 

States.(1) Over the last decade, there were nine years with ten or more separate billion-dollar 

disaster events, constituting 82% of all the years with ten or more separate billion-dollar disaster 

events within the last 41 years (1980–2020).(1)  

 

Figure 3. Map. US 2020 billion-dollar weather-related disasters.(1) 

DISASTER MANAGEMENT 

Part of the incurred cost of such events is due to damage assessment and cleanup efforts. These 

efforts are usually handled manually by state and federal ground teams. Therefore, there is a 

growing need to develop an automated damage assessment process to streamline disaster 

preparedness, response, and recovery operations. 
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A system implementing Unmanned Aerial Vehicles (UAVs) and Convolutional Neural Networks 

(CNNs) to identify and tag disaster-damaged roads has the potential to significantly reduce the 

workforce needed to assess natural disaster damage and provide aid. In the year 2020, the 

International Committee of the Red Cross reported that the world endured a total of over three 

hundred natural disasters triggered by natural hazards, of which 77% were climate or weather-

related.(2) Furthermore, hurricanes, floods, tornadoes, and heatwaves had lasting effects on 1.7 

billion people worldwide during the past decade.(2) These effects include severe damage to 

transportation routes necessary for rapid aid administration and transit. Modern-day first 

responders require high-fidelity information on road damage to conduct complex recovery and aid 

operations on the front lines. These time-sensitive operations are affected by time delays when 

first responders cannot access road damage assessment data that would otherwise permit swift aid 

planning.(3) 

 

The demand for assistance after a natural disaster can only be met through suitable disaster 

management systems. Current disaster management operations require high organizational 

performance from police officers, firefighters, search and rescue units, paramedics, and special 

casualty access teams.(4) However, these methods do not address constraints such as shortage of 

first responders, narrow time frames, and proper distribution of aid in these situations; thus, they 

rely heavily on accurate geolocation data with no room for human error. Moreover, the effects of 

natural disasters on transportation systems produce congestion during large-scale evacuations that 

are detrimental to safe transit and aid transportation.(5) 
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To address such natural disaster situations, we developed a UAV system that classifies disaster-

damaged roads in real-time using CNNs. This system also reports the classified damages to an 

online virtual map through the ArcGIS mapping software. The UAVs can capture bird’s eye 

images of roads after natural disasters, which will later be sent to be classified. Moreover, the 

system can automatically tag disaster-damaged roads on an ArcGIS map to provide real-time 

geolocation feedback. 

 

The proposed system would enhance first responder teams’ response time by providing pertinent 

data (e.g., location, type of damage, timestamp, etc.) on the state of transportation routes after 

natural disasters. By doing so, we have expanded the application of CNNs while developing a 

novel and intelligent disaster management system. 

 

CONVOLUTIONAL NEURAL NETWORKS BACKGROUND  

Convolutional Neural Networks (CNNs) are flexible network configurations capable of a wide 

variety of image data mapping. In other words, CNNs can accurately classify input images into 

output categories. First proposed in the highly acclaimed 1995 paper by Yann Lecun,(6) each CNN 

comprises three parts that help classify raw data. These parts are referred to as local receptive 

fields, temporal or spatial sub-sampling, and shared weights. The local receptive fields have 

neurons in charge of detecting and extracting prominent base features that are later combined in 

higher layers. In this process, shared weights, or numerical values, are implemented inside the 

filters used by the receptive fields to extricate the features. This creates a feature map that can be 

used as the starting point to guide the output. Nonetheless, the classification estimation cannot be 

extremely strict when identifying raw data features to produce a feature map. Therefore, spatial 

subsampling through activation functions is applied to reduce the resolution of feature maps and 
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their sensitivity to outputs produced by their current convolutional layer.(6) In short, a 

convolutional layer in the network creates a general feature map with the essential features from 

the raw data. It then feeds this to the next convolutional layer as an input, which repeats the same 

procedure. Figure 4 exemplifies the complete architecture of a CNN, where convolutional layers 

can be observed creating feature maps that are then input to a pooling layer, also known as a spatial 

subsampling layer. The process continues until a matrix of feature layers is achieved and then fed 

to fully connected layers that combine these feature maps into a model.(7) The output model is then 

classified by an activation function, in most cases the softmax “normalized exponential function” 

function. 

 

Figure 4. Illustration. Convolutional neural network architecture.(8) 

Current image classification techniques primarily use CNNs since they are purely algorithmic and 

have low user dependency. The CNNs address the costs and time constraints associated with 

having people going through and classifying images in extensive datasets. User dependency 

mainly occurs during the initial training phase of the CNN. The developer will create a training 

dataset that will have images separated into classification categories. Thus, the network will be 

able to identify patterns under certain categories and properly classify future data. Artificial 

intelligence solutions bridge the gap between purely mathematical processes and slow human 

handling by creating a dynamic and trainable image classification system. Though the theories and 



9 
 

practical implementations of CNN-based image classifications have already been developed, there 

remains a need for systematic large-scale innovative implementation of these networks. 

 
Pre-Trained Convolutional Neural Networks 

Pre-trained CNNs are revolutionary for their innovative design and are capable of properly 

classifying many objects. The networks used in this project were pre-trained on the ImageNet 

dataset, dataset of 15 million high-resolution images. This significantly reduces the computational 

complexity in the training process by using transfer learning. Transfer learning allows pre-trained 

networks to modify their classification categories.(9) AlexNet, GoogLeNet, and ResNet50 are some 

of the state-of-the-art pre-trained networks used in this project. These networks are introduced 

below. 

AlexNet 

AlexNet is a 22 layer deep CNN that classified 1.2 million high-resolution images into 1000 

different classes in the ImageNet Large-Scale Visual Recognition Challenge (LSVRC) 2010 

contest.(8) The architecture of AlexNet is illustrated in Figure 5. Additionally, AlexNet was the 

first network to exploit the use of graphics processing units (GPUs) to improve performance. The 

AlexNet architecture consists of five convolutional layers, three max-pooling layers, two 

normalization layers, two fully connected layers, and one softmax layer. AlexNet’s convolutional 

layers consist of convolutional filters and a ReLu nonlinear activation function. Its pooling layers 

are employed to perform max pooling. Image-wise, the network can only take a fixed size as an 

input, in this case, 227x227x3. Finally, AlexNet contains 60 million parameters. 
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Figure 5. Illustration. Architecture representation of AlexNet CNN.(10) 

GoogLeNet 

GoogLeNet is a 22 layer deep CNN deployed to classify images in the ImageNet Large-Scale 

Visual Recognition Challenge 2014.(8) The architecture of GoogleNet is illustrated in Figure 6. 

This neural network has been leveraged for many computer vision applications such as image 

classification, object detection, object classification, face recognition, etc. Architecturally, 

GoogLeNet accepts an input image of 224x224x3. It is worth noting that GoogLeNet does an 

exceptional job of reducing the input image while maintaining important spatial information 

through the convolutional layers. This allows the network to obtain more details from the reduced 

image used throughout the network. Moreover, GoogLeNet implements an Auxiliary Classifier 

that prevents the rise of overfitting and improves regularization. 

 

Figure 6. Illustration. Architecture representation of GoogLeNet CNN.(8) 
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ResNet50 

ResNet50 is a 50 layer deep CNN trained on over a million images that implements residual 

learning and won first place in the ImageNet LSVRC 2015.(11) The architecture of ResNet50 is 

illustrated in Figure 7. The ResNet50 model consists of a total of five stages and Identity Blocks 

in its architecture. Each Identity Block contains three convolution layers. Fundamentally, 

ResNet50 is such a groundbreaking network due to its ability to train extremely deep neural 

networks with 150+ layers. Additionally, ResNet50 implements connection skips instead of 

stacking convolutional layers to fend off problems with vanishing gradient descent. Finally, the 

network also implements the ReLu activation layer. 

 
Figure 7. Illustration. Architecture representation of ResNet50 CNN.(11) 

 

LITERATURE REVIEW OF UAV APPLICATIONS 

Unmanned Aerial Vehicles (UAVs) are considered an emerging technology that facilitates 

dynamic in-situ operations such as sensing real-time events from the air. However, minimal 

research has been conducted regarding the utility of UAV systems in disaster management and 

damage assessment systems. 

 

There are many instances where UAVs are being utilized in transportation-related research. For 

example, the North Carolina Department of Transportation is investigating the use of UAV aerial 

photography to ensure environmental compliance during highway construction to limit the effect 
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of wind and water erosion of exposed soil.(12) The Center for Transportation, Environment, and 

Community Health is investigating the utilization of UAVs with aerial photography in tracking 

the shoreline conditions to protect infrastructure.(13) Also, a number of research projects are 

investigating the use of UAVs in inspecting road and railroad bridges, some of which are funded 

by the Mountain-Plains Consortium, Transportation Consortium of South-Central States, 

Transportation Research Board, and other agencies.(14,15,16) 

 

Further research has been conducted beyond the state transportation departments exploring the 

utilization of UAVs for restoring communication networks in areas devastated by natural 

disasters.(17) In contrast, others have investigated the use of UAVs in traffic surveillance and 

monitoring.(18) These existing studies are directly related to the scope of this proposed research. 

However, to the best of our knowledge, the research described herein has not been investigated 

before. 

 

PROJECT OBJECTIVE 

This project aims to develop an automated UAV based disaster management system. This system 

will utilize image processing and deep learning techniques to classify objects and assess damage 

to the state’s transportation system. The assessed damages will be automatically geo-tagged to a 

map compatible with the GDOT GIS standards and ArcGIS Server/Portal maps. The geo-tagged 

maps will be used by the state damage assessment, response, and recovery teams to optimally 

facilitate their efforts, especially regarding the restoration of the state transportation system within 

the devastated areas. Also, the system will be able to provide the damage assessment team with a 

list summarizing all damages that were assessed and their geographical locations. 
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This proposed system will have a two-fold benefit. 

1. It will provide the Georgia Department of Transportation with technology to speed up the 

damage assessment and recovery of the state transportation system, which will facilitate 

first responders’ and incident management assistance teams’ efforts. 

2. It will also allow the Georgia Department of Transportation to identify and estimate the 

recovery cost for any specific event. Additionally, it will provide a means to generate 

reports that will assist in the recovery of GDOT assets and financial losses. 

 

REPORT ORGANIZATION 

This report is organized as follows: 

● Chapter 1 is the “Introduction”, where the project background and motivation, CNNs 

technical background, the prior literature review, and the project objectives are discussed.   

● Chapter 2, “Comparative Analysis of UAV Platforms”, contains a detailed comparative 

analysis of some of the leading commercial UAV systems with respect to key performance 

parameters. This chapter also provides UAV platform recommendations for this project. 

● Chapter 3, “System Design and Implementation”, provides an overview of the system 

hardware and software requirements. 

● Chapter 4, “Graphical User Interface Application”, details the software application features 

and how it centralizes the processing and mapping of the UAV data. 

● Chapter 5, “Classification Results and Discussion”, contains the CNN classification 

simulations and results, and a discussion of the findings. 

● Chapter 6, “Conclusion and Recommendations”, details the project’s conclusions and 

recommendations for future work. 

● Finally, the report concludes with the list of references.



CHAPTER 2. COMPARATIVE ANALYSIS OF UAV PLATFORMS 
 

BACKGROUND OF UAV CLASSIFICATION  

UAVs are one of the novel technologies that offer a low-cost and straightforward means of 

collecting aerial imagery. Before UAVs, aerial imagery was mainly captured using manned aerial 

vehicles and satellites, which are not cost-effective solutions for many applications. However, 

UAV systems vary tremendously in size, features, and applications, so identifying the right UAV 

platform can sometimes be challenging. Hence, this chapter will highlight how to properly 

categorize UAV systems, identify key specifications, and finally assess the application viability of 

several commercially available UAV platforms in disaster management systems.    

UAVs can be categorized using different criteria based on UAV attributes such as the type of UAV 

(rotorcraft vs. fixed-wing), UAV weight, payload, maximum altitude, maximum speed, etc. For 

example, the Department of Defense (DoD) uses five different categories based on weight, 

operating altitude, and airspeed to classify their UAV systems, as shown in Table 1.(19)  

Table 1. DoD classification of UAV systems 

UAS 
Category 

Max Gross 
Takeoff Weight Normal Operating Altitude (ft) Airspeed 

Group 1 < 20 pounds < 1,200 above ground level (AGL) < 100 Knots 

Group 2 21-55 pounds < 3,500 AGL < 250 Knots 

Group 3 < 1,320 pounds < 18,000 mean sea level (MSL) < 250 Knots 

Group 4 > 1,320 pounds < 18,000 MSL Any Airspeed 

Group 5 > 1,320 pounds > 18,000 MSL Any Airspeed 
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Meanwhile, the Federal Aviation Administration (FAA) classifies UAVs under 55 lbs. with a 

maximum speed of 100 mph and a maximum altitude of 400 feet as a Small Unmanned Aerial 

System (sUAS). Most, if not all, commercially available UAVs fall under this classification which 

is regulated by the FAA 14 CFR Part 107.(20)   

With that said, there isn’t a standardized classification of UAV systems. Therefore, in this analysis, 

the focus will mainly be on commercially available rotorcraft UAV systems under 55 lbs. regulated 

by the FAA 14 CFR Part 107. However, UAV platforms vary in size, features/specifications, and 

price even within this category. Therefore, the following section will highlight the critical UAV 

features and specifications required for disaster management applications. 

 
IMPORTANT UAV FEATURES AND SPECIFICATIONS  

After a thorough review of many commercially available UAV platforms, the features and 

specifications that are most mentioned are flight duration, payload capability, maximum speed, 

maximum range, and add-on payload (such as imaging systems). However, applications such as 

disaster assessment require additional features and specifications such as reliability (for instance, 

maximum wind resistance), software development integration capabilities, ground station support, 

and ease of reconfiguration. 

 

Flight Duration 

Flight duration is especially important for disaster assessment UAV-based systems because of 

battery charging constraints. The longer the flight duration, the larger the covered area per flight 

is, which results in more efficient disaster assessment and recovery efforts. This will reduce the 

need to fly more missions and shorten the disaster management response time. 
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For example, according to the National Hurricane Center Tropical Cyclone Report for Hurricane 

Florence, “Almost every major road and highway in the southeastern portion of the state 

experienced flooding, with large stretches of Interstates 40 and 95, and U.S. Highway 70 is 

impassable for several days even after Florence had dissipated. At one point, the city of 

Wilmington was cut off entirely due to the floodwaters”.(21) A UAV system with the longest flight 

duration and range will be more effective in a situation like this. 

 
Payload Capability 

The UAV system's ability to accommodate different payloads, such as high-quality variable zoom 

cameras, infra-red cameras, light detection and ranging (LiDAR), etc., is of the utmost importance. 

This is because the success of such a system is predicated on its ability to capture high-resolution 

aerial videos and images. Therefore, the minimum acceptable payload that the UAV system should 

carry is at least 1 kg – the reason being that advanced high-resolution camera systems can weigh 

close to 1 kg. For example, the Zenmuse H20T weighs 828±5 g, while the Zenmuse H20 weighs 

678±5 g.(22)  A typical payload would be around 900g; however, operating the UAV system under 

75% of the maximum payload is optimal to increase the flight time and reduce the risk of 

overloading the UAV system. Based on this analysis, a UAV system with a payload of 1kg would 

be the minimum requirement to achieve the project goals, but not an optimal choice. As for an 

optimal payload capacity, a UAV system capable of handling 2 kg or more would be optimal to 

allow for any future payload improvements and to increase the system's future utility for other 

applications. 
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Software Development Integration 

The scope of this research project is to develop a neural network capable of detecting inaccessible 

transportation routes and integrating this with an advanced UAV flight management system. The 

scope is not to develop a flight management system but rather to add the damage assessment 

capability to supplement the functionality of an existing flight management system. This is why a 

UAV system with a well-developed flight management system is desired. This will ensure that the 

flight management system is designed specifically for the UAV system of choice and is 

customizable. Typically, flight management systems require a low-level language capable of 

embedded systems programming. Many flight management systems, such as the DJI Onboard 

SDK, use the C++ programming language. The C++ programming language is preferred for flight 

management systems because it is a compiled language and hence executes significantly faster 

than interpreted languages such as Python or MATLAB, especially if processing capabilities are 

added to the UAV system. However, adding processing capabilities onboard the UAV will increase 

its weight, reducing its flight time; also, the artificial intelligence processing is energy-hungry, 

which will deplete the batteries fasted and further reduce the flight time. Therefore, the project’s 

scope is to process the videos and images in the ground station. Given that Python and MATLAB 

are currently among the most well-developed languages for artificial intelligence programming, 

those are the two languages recommended for the disaster assessment neural network classifier. 

 

Ground Station Support 

Ground station support is critical to achieving the goal of the project. Typically, UAV systems are 

designed to be controlled by a long-distance RF controller. These controllers are usually included 

with the purchase of the UAV system and have built-in autonomous flight capabilities. Some 

industrial/commercial UAVs are designed to be compatible with the manufacturer-supplied 
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controller and/or a central computer through the manufacturer-developed software development 

kit. The UAVs’ capability of being controlled from a central computer (ground station) or interface 

with a ground station is an essential requirement since there is a need to post-process the videos 

and images and classify them using neural networks. Neural networks require significant 

computational power, typically using a graphics processing unit (GPU). GPUs are essential for 

neural network training and achieving real-time performance when deployed. The UAV system 

must communicate with a central computer having the optimal hardware for running the neural 

network in order to achieve real-time performance. The UAV system sends the videos and images 

it captures while the central computer handles the computations performed by the neural network. 

 

Ease of Customization 

The UAV system must be designed to be customized out of the box to avoid voiding its warranty. 

Typically, consumer UAVs have no expansion bays and are designed with a payload that is not 

meant to be changed. On the other hand, industrial/commercial UAVs typically can change 

payload but still lack expansion bays for different sensors and hardware, which is not optimal. The 

type of industrial/commercial UAV system that is recommended for this project is one that 

includes expansion bays compatible with multiple payloads and is designed to be customized by 

the user. 

 

Reliability 

Typically, UAV systems have quad-copter designs that pose reliability issues. This issue stems 

from a lack of redundancy in the motors. If a single motor on a quad-copter system fails, the UAV 

has an extremely high probability of crashing. In the event of a crash from standard flight altitude, 
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many important hardware components will be damaged to the point of replacement. Industrial 

grade UAVs improve reliability by using redundancy, such as a hex-copter design or adding safe-

fail algorithms to handle failures gracefully. Hex-copters can lose at least one motor or propeller, 

possibly two depending on which two motors or propellers fail, and return safely to the ground. 

Another important reliability feature desired for any UAV system is smart power management. 

Smart power management systems have multiple batteries onboard that can operate the entire UAV 

system independently. When a single battery fails, the power management system will adjust the 

power consumption from the rest of the batteries to maintain operation. The combination of fail-

safe algorithms and redundancies with a smart power management system provides the UAV 

system with robust and redundant safety mechanisms to ensure the UAV can land safely in the 

event of motor/propeller or battery failure. 

 

UNMANNED AERIAL VEHICLE HARDWARE SYSTEMS  

After reviewing various UAV platforms, the following list highlights the most viable candidate 

platforms to be used in this disaster assessment system. The UAV platforms of interest are:  

● DJI Matrice 600 Pro 

● Matrice 300 RTK 

● DJI Phantom 4 RTK 

● Yuneec H520 RTK 

● Freefly Alta 8 Pro 

● DJI Mavic 2 Pro 

● Matrice 210 RTK V2 

 

These UAV platforms were further analyzed and compared to finalize the UAV platform 

recommendations. 
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DJI Matrice 600 Pro Analysis 
 

 
Figure 8. Photo. DJI Matrice 600 Pro 

 

The DJI Matrice 600 Pro, illustrated in Figure 8, has a maximum range of 5 km and a variable 

flight duration ranging between 20 to 38 minutes depending on the payload, which is well above 

the minimum UAV specifications mentioned in the flight duration sections.(23) In Figure 9, a Flight 

Time vs. Payload graph provided by DJI plots the different flight times (in minutes) based on the 

payload applied to the UAV (in kg). 

 
Figure 9. Graph. DJI Matrice 600 flight time vs. payload.(23) 

Referring to Figure 9, the graph shows that a payload of 2 kg would result in a flight time of 29 

minutes with the DJI Matrice 600 Pro system. This UAV system is also compatible with the DJI 
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Onboard SDK mentioned in the Software Development Integration section. The Matrice 600 Pro 

implements a hexacopter design that significantly improves redundancy. In other words, if a motor 

stops working or a propeller malfunctions mid-flight, the UAV has a high probability of landing 

safely in comparison to a UAV that uses a quad-copter design. In addition, the DJI Matrice 600 

Pro is compatible with one of the camera systems of choice, the Zenmuse Z30, without the need 

for modification. The DJI Matrice 600 Pro also utilizes a navigation and positioning system, the 

D-RTK GNSS. The D-RTK GNSS system would significantly improve the location accuracy 

when assessing damage. It is also compatible with many other camera systems and add-ons 

developed by DJI, making it easily reconfigured to serve different purposes. Table 2 summarizes 

the DJI Matrice 600 Pro features and specifications.  

Table 2. Summary of DJI Matrice 600 Pro features and specifications 

Maximum Range 5 km (FCC Compliant) 

Maximum Hover Time 18 min (maximum payload and TB48S batteries) 
38 min (without payload) 

Maximum Speed 65 kph (no wind) 
Maximum Payload 5.5 kg (TB48S batteries) 
Maximum Wind Resistance 8 m/s 

Compatible Camera Systems 
DJI Gimbals: Ronin-MX, Zenmuse Z30, Zenmuse X5/X5R, 
Zenmuse X3, Zenmuse XT, Zenmuse Z15 Series HD: Z15-
A7, Z15-BMPCC, Z15-5D III, Z15-GH4 

Flight Management Systems A3 Pro (Remote control and API compatible) 
Smart Power Management Intelligent Flight Batteries 

Frame Design Hex-copter 
Number of Batteries (TB48S) 6 

Battery Type LiPo 6s 
Capacity 5700 mAh 
Voltage 22.8 V 
Max Charging Power 180W 
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Matrice 300 RTK Analysis 

 
 

 
Figure 10. Photo. DJI Matrice 300 RTK 

The DJI Matrice 300 RTK, illustrated in Figure 10, is the UAV system of choice for this project. 

It has a maximum transmission range of 15 km and a variable flight time ranging between 55 to 

31 minutes depending on the payload,(24) which is well above the minimum UAV specifications 

mentioned in the Flight Time section. In Figure 11, a Flight Time vs. Payload graph provided by 

DJI plots the different flight times (in minutes) based on the payload applied to the UAV (in kg). 

 
Figure 11. Graph. DJI Matrice 300 RTK flight time vs. payload.(24) 
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Referring to Figure 11, the graph shows that a payload of 2 kg would result in a flight time of 34 

minutes with the DJI Matrice 300 RTK system. The Matrice 300 RTK has a built-in advanced 

redundancy system that helps keep missions ongoing even in unexpected scenarios. These safety 

mechanisms include dual flight control system sensors, dual control signal links, dual intelligent 

batteries, dual transmission links, obstacle sensor system redundancies, and three-propeller 

emergency landing.(24)  

 

The DJI Matrice 300 RTK is compatible with almost all the high-resolution multi-sensor camera 

systems, such as Zenmuse H20, Zenmuse H20T, and Zenmuse Z30, without the need for 

modification. Figure 12 illustrates some of the Matrice 300 RTK compatible DJI camera systems. 

It is also compatible with many other camera systems, allowing future expansion and utilization 

for different applications. Furthermore, the Matrice 300 RTK has purpose-built applications such 

as DJI Pilot and DJI FlightHub. DJI Pilot helps the user optimize flight capability for peak 

performance. DJI FlightHub allows users to manage their UAV operations by supporting large 

organizations to scale their aerial operations.(24)  



24 
 

 
Figure 12. Photos. DJI Matrice 300 RTK camera compatibility options.(24) 

The DJ Matrice 300 RTK also uses a new integrated Health Management System that displays the 

current status of all systems, notification logs, and a preliminary troubleshooting guide, as 

illustrated in Figure 13. Also, this system includes the aircraft’s flight logs, duration, mileage 

throughout its entire lifecycle, and tips on UAV care and maintenance. The Matrice 300 RTK 

adopts a new Primary Flight Display (PFD) that integrates flight, navigation, and obstacle 

information. Flight information such as aircraft attitude, altitude, velocity, wind speed, and wind 

direction are presented. Pilots can also view the live status of the aircraft’s heading, trajectory, 
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PinPoint information, and home point projection more efficiently. It is also possible to visualize 

all nearby obstacles at once with the new obstacle map so that the pilot can be fully informed.(24)  

 

Figure 13. Photo. DJI Matrice 300 RTK aircraft health management interface.(24) 

The DJI 300 RTK also employs Smart PinPoint and Smart Track in its AI interface. Smart Track 

helps identify and follow moving subjects like people, vehicles, and boats with the Smart Track 

function, where auto-zoom is applied for steady tracking and viewing. The subject’s dynamic 

location is continuously acquired and shared with another remote controller or DJI FlightHub. 

Smart PinPoint will mark an object in the camera or map view with a quick tap. Advanced sensor 

fusion algorithms will immediately calculate its coordinates, which are projected to all camera 

views as an AR icon. The subject’s location is automatically shared with another remote controller 

or online platforms such as DJI FlightHub.(24)  

 

The AI component of the Matrice 300 RTK can also automate routine inspections and capture 

consistent results every time. Onboard AI recognizes the subject of interest and identifies it in 

subsequent automated missions to ensure consistent framing. The UAV can also record mission 

actions such as aircraft movement, gimbal orientation, photo shooting, and zoom level to create 
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sample mission files for future automated inspections.(24) Table 3 summarizes the DJI Matrice 300 

RTK features and specifications. 

Table 3. Summary of DJI Matrice 300 RTK features and specifications 

Maximum Range 15 km (FCC Compliant) 

Maximum Hover Time 55 min (without payload) 
31 min (max payload) 

Maximum Speed 82.8 kph (no wind) 
Maximum Payload 2.7 kg  
Maximum Takeoff Weight 9 kg 
Maximum Wind Resistance 54 kph (15m/s) 
Compatible Camera Systems DJI Gimbals: Zenmuse XT2/XT S/Z30/H20/H20T 
Frame Design Quadcopter 
Flight Management Systems DJI Pilot / DJI FlightHub 
Smart Power Management Intelligent Flight Batteries - TB60 
Number of Batteries (TB60) 6 
Battery Type LiPo 12S 
Capacity 5935 mAh 
Voltage 52.8 V 
Energy 274 Wh 
Ingress Protection Rating IP45 
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DJI Phantom 4 RTK Analysis 
 

 
Figure 14. Photo. DJI Phantom 4 RTK  

 
A popular choice among hobbyists and professional photographers, the Phantom 4 RTK, 

illustrated in Figure 14, offers a reliable range and data transmission. However, this UAV system 

is not designed to be modified. Due to its curved design, it would be challenging to add any extra 

instrumentation onboard this UAV. Also, there is very little documentation on modifications and 

payload specifications. Overall, this UAV platform can perform the tasks required. However, it is 

not recommended since it lacks fail-safe mechanisms, can’t handle payloads other than its onboard 

camera, and has a limited camera system compared to other platforms. From the research gathered 

on the Phantom 4 RTK UAV, this system is optimized for high-quality photographs and videos 

but is not optimal for this project.(25) Table 4 summarizes the DJI Phantom 4 RTK features and 

specifications. 
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Table 4. Summary of DJI Phantom 4 RTK features and specifications 

Maximum Range 6.9 km  
Maximum Flight Time 27 min  
Maximum Speed 50 kph P - mode 

58 kph A - mode 
Maximum Payload N/A (not provided by DJI and not designed for custom 

payloads) 
Maximum Wind Resistance 10 m/s 
Compatible Camera Systems N/A (The 4k camera that comes included with the UAV is not 

meant to be upgraded, only replaced) 
Flight Management System DJI Mobile SDK and DJI Windows SDK 
Smart Power Management DJI Intelligent flight battery (limited to 1 onboard UAV) 
Frame Design Quadcopter 
Number of Batteries 
(intelligent flight battery) 1 

Battery Type LiPo 4S 
Capacity 5870 mAh 
Voltage 15.2 
Max Charging Power 160W 
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Yuneec H520 RTK Analysis 
 

 
Figure 15. Photo. Yuneec H520 RTK 

 

The Yuneec H520 RTK, illustrated in Figure 15, is one of the most advanced UAVs in the 

commercial field. It has been intensively used to map construction sites. Site supervisors employ 

the Yuneec H520 RTK for its built-in RTK system that allows augmented location accuracy.  The 

Yuneec H520 RTK is an excellent UAV platform for this project. The main limitation compared 

to the DJI Matrice 300 RTK is in the range and the maximum flight time; however, this UAV can 

carry an impressive 23 kg of payload.(26) This UAV has many fail-safe mechanisms similar to the 

DJI Matrice 600 pro and the DJI Matrice 300 RTK. Table 5 summarizes the Yuneec H520 RTK 

features and specifications. 
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Table 5. Summary of Yuneec H520 RTK Features and Specifications 

Maximum Range 1.6 km (for FCC Compliance in optimal conditions) 
Maximum Flight Time 28 min (depending on payload) 
Maximum Speed 61 kph (manual mode) 
Maximum Payload 23 kg 
Maximum Wind Resistance Maximum wind tolerance between 10 m/s and 13 m/s 
Compatible Camera Systems CGO-3+ (3-axis gimbal 360-degree rotation), CGO-

CI seven-element inspection-ready camera (cinema and 
vertical inspection), CGO-ET dual thermal RGB 
camera (For industrial maintenance, fire inspections, 
and search & rescue) 

Flight Management System Yuneec SDK or ST16S All-In-One Controller 
Smart Power Management Yes (can lose one motor and still fly) 
Frame Design Hexa-Copter 
Battery Type LiPo 4s 
Capacity  5250 mAh 
Voltage 15.2V 
Max Charging Power N/A 
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Freefly Alta 8 Pro Analysis 

 

 
Figure 16. Photo. Freefly Alta 8 Pro  

 

The Freefly Alta 8 Pro, illustrated in Figure 16, is designed for high-quality aerial cinematography 

with the ability to carry a maximum payload of 9 kg.(27) This UAV is designed to carry high-

performance camera systems and has a relatively high flight time considering the payload. 

However, its flight time is still less than the DJI Matrice 300 RTK. The maximum range for this 

UAV sits at 5 km, with a maximum flight time ranging between 7 to 34 minutes depending on the 

battery capacity used and the actual payload.(27) Figure 17 highlights the flight time vs. payload 

for three different battery setups. 

 

Figure 17. Graph. Freefly Alta 8 Pro approximate flight time vs. payload.(27) 



32 
 

Additionally, the octocopter framework allows for more system stability if any of the rotors fail. 

The Freefly Alta 8 is a viable UAV platform for this project. Compared to the DJI Matrice 300 

RTK, the main limitations are in the range and the maximum wind tolerance. Table 6 summarizes 

the Freefly Alta 8 Pro features and specifications. 

Table 6. Summary of Freefly Alta 8 Pro features and specifications 

Maximum Range 5 km 
Maximum Flight Time 7 – 8 minutes (at max payload) 

20 – 30 minutes (at 2 kg) 

Maximum Speed 45 mph (72 kph depending on payload)** 
Maximum RPM (flat rated) 3600 RPM 
Maximum Payload 9 kg 
Maximum Wind Resistance 8 m/s 
Compatible Camera Systems Ready-Made RC RMRC-700XVN (Recommended), Runcam 

Eagle 2 Pro, or similar 
Flight Management System DJI Onboard SDK (QT compatible) 
Smart Power Management Yes 
Frame Design Octocopter 
Battery Type and Size LiPo 6s (2 parallel battery packs) 
Capacity 10 Ah 
Voltage 22.2 V 
Max Charging Power N/A 
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DJI Mavic 2 Pro Analysis 
 

 
Figure 18. Photo. DJI Mavic 2 Pro  

 

The DJI Mavic 2 Pro, illustrated in Figure 18, is one of the most advanced customer-friendly UAVs 

in the market. The Mavic 2 Pro’s design is geared to high-quality photography and hardware 

portability. In addition, DJI implemented various sensors on the Mavic 2 Pro’s design to allow for 

obstacle avoidance.(28) However, the DJI Mavic 2 Pro is not recommended for this project since it 

cannot carry any additional payload, limiting its use of more advanced camera systems. Overall, 

the Mavic 2 Pro does not meet all of the requirements for this project's preferred UAV platform. 

Table 7 summarizes the DJI Mavic 2 Pro features and specifications. 

Table 7. Summary of DJI Mavic 2 Pro features and specifications 

Maximum Range 18 km (at consistent 50 kph) 
Maximum Flight Time 31 minutes (at consistent 25 kph) 
Maximum Speed 72 kph (S-mode and no wind) 
Maximum Payload Not designed for custom payloads* 
Maximum Wind Resistance 10 m/s 
Compatible Camera Systems Hasselblad L1D-20c Camera 
Flight Management System DJI Onboard SDK (QT compatible) 
Smart Power Management Yes 
Frame Design Quadcopter 
Battery Type and Size LiPo 4s 
Capacity 3850 mAh 
Voltage 15.4 V 
Max Charging Power 80 W 
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Matrice 210 RTK V2 Analysis 
 

 
Figure 19. Photo. DJI Matrice 210 RTK V2  

 
The DJI Matrice 210 RTK V2, illustrated in Figure 19, has one of the most rugged designs on the 

market. It combines this design with a simple user configuration to perform industrial applications. 

This UAV has a built-in RTK module and also includes a GNSS mobile station. The combination 

of these two systems makes the DJI Matrice 210 RTK V2 capable of high precision mapping. With 

its intelligent flight mode features, such as obstacle avoidance, point of interest, and active track, 

the DJI Matrice 210 RTK V2 is one of the ‘smartest’ UAVs in the industry. This UAV is used in 

various applications such as firefighting, construction site mapping, telecommunication 

inspection, and offshore rig inspection.(29) This UAV is a good candidate platform to use for this 

project. Table 8 summarizes the DJI Matrice 210 RTK V2 features and specifications. 
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Table 8. Summary of DJI Matrice 210 RTK V2 features and specifications 

Maximum Range 8 km 
Maximum Flight Time 24 min (with maximum payload) 
Maximum Speed 73.8 kph (45.9 mph) S-mode/A-mode  

61.2 kph (38 mph) P-mode 
Maximum Payload 1.2 kg 
Maximum Wind Resistance 10 m/s 
Compatible Camera Systems Zenmuse XT2, Zenmuse X5S, Zenmuse X7, Zenmuse Z30, 

Zenmuse XT, and Third-Party Payloads 
Flight Management System DJI Onboard SDK (QT compatible) 
Smart Power Management Yes 
Frame Design Quadcopter 
Battery Type and Size LiPo 6s 
Capacity 7660 mAh 
Voltage 22.8V 
Max Charging Power 180 W 

 

HARDWARE RECOMMENDATION 

After assessing and comparing the best commercial and industrial UAVs in the market, the DJI 

Matrice 600 Pro UAV was initially the recommended system for this project. The DJI Matrice 600 

provides a substantial flight time of approximately 30 minutes, with the capability of handling the 

project’s minimum required payload of 2 kg. This UAV’s ability to accommodate high payloads 

makes this UAV system a desirable platform since it is easy to modify for future payloads and to 

utilize for different applications without sacrificing a substantial amount of flight time. Its 

hexacopter design makes the UAV extremely reliable. As mentioned before, the DJI Matrice 600 

Pro can accommodate a wide variety of advanced camera systems, allowing seamless future 

modifications to this UAV platform. Moreover, the D-RTK GNSS software implemented in the 

DJI Matrice 600 Pro allows for better maneuvering and provides better accuracy.  

 

This comparative analysis provided justifications for multiple UAV systems to choose from. 

However, the DJI Matrice 600 Pro met and exceeded the minimum required specifications for this 
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project and was recommended as the platform of choice. However, the DJI Matrice 600 Pro was 

discontinued during the project and was replaced with the new DJI Matrice 300 RTK. Therefore, 

a new comparative analysis was conducted between the new DJI Matrice 300 RTK and the DJI 

Matrice 600 Pro. The analysis concluded that the new DJI Matrice 300 RTK exceeds the 

expectations compared to the DJI Matrice 600 Pro in key areas such as wind speed tolerance, 

range, speed, flight time, and reliability. 

 

Furthermore, the Matrice 300 RTK applies newer AI-based technology such as Smart Track and 

Live Mission Recording, enabling the user to have an automated system that returns accurate data 

for mission completion. Therefore, the final recommendation is to utilize the DJI Matrice 300 RTK 

as the UAV platform of choice for this project. The main reason why this platform was chosen is 

due to its impressive ability to resist wind speeds up to 54 kph or 15 m/s, which surpassed all other 

UAV platforms analyzed. Table 9 summarizes the one-to-one comparison between the DJI Matrice 

300 RTK and the DJI Matrice 600 Pro. 
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Table 9. Comparison between DJI Matrice 300 RTK and DJI Matrice 600 Pro 

 DJI Matrice 300 RTK DJI Matrice 600 Pro 
Maximum Range 15 km (FCC Compliant) 5 km (FCC Compliant) 

Maximum Hover Time 31 min (max payload) 
55 min (without payload) 

18 min (maximum payload and 
TB48S batteries) 
38 min (without payload) 

Maximum Speed 82.8 kph (no wind) 65 kph (no wind) 
Maximum Payload 2.7 kg  5.5 kg (TB48S batteries) 
Maximum Takeoff Weight 9 kg 15.5 kg 
Maximum Wind Resistance 54 kph (15 m/s) 28.8 kph (8 m/s) 

Compatible Camera systems DJI Gimbals: Zenmuse 
XT2/XT S/Z30/H20/H20T 

DJI Gimbals: Ronin-MX, 
Zenmuse Z30, Zenmuse 
X5/X5R, Zenmuse X3, Zenmuse 
XT, Zenmuse Z15 Series HD: 
Z15-A7, Z15-BMPCC, Z15-5D 
III, Z15-GH4 

Frame Design Quadcopter Hex-copter 

Flight Management systems DJI Pilot / DJI FlightHub A3 Pro (Remote control and API 
compatible) 

Smart Power Management Intelligent Flight Batteries - 
TB60 Intelligent Flight Batteries 

Number of Batteries (TB60) 6 6 
Battery Type LiPo 12S LiPo 6s 
Capacity 5935 mAh 5700 mAh 
Voltage 52.8 V 22.8 V 
Energy 274 Wh 99.9 Wh 
Ingress Protection Rating IP45 N/A 
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CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION 
 

SYSTEM DESIGN OVERVIEW 

In this chapter, the system’s hardware and software implementation used in this project are 

detailed. In this project, a novel and completely automated disaster assessment system was 

developed. This system captures high-quality geospatial videos of disaster-damaged roads while 

live-streaming the video feed to an RTMP server. Then a ground station samples the videos into 

images and classifies them. For each classified image, the geolocation information is extracted 

using MATLAB to obtain the longitude, latitude, and time-stamp. These geolocation references 

are then saved alongside the classification output to create a database of all the classified images. 

Once this step is completed, the images are sent through a Python-built interface to create an 

ArcGIS live map. The map is updated each time new data is received. A flowchart detailing each 

stage of the system is illustrated in Figure 20. 

 

Figure 20. Chart. Complete system flowchart 
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SYSTEM HARDWARE 

The system hardware consists of three main components, which are:  

1) UAV platform 

2) Imaging system (UAV add-on) 

3) Ground station 

Each of these hardware components is discussed in detail in the following subsections.  

 

UAV Platform 

To effectively capture images to feed the classifier, the UAV hardware platform of choice was 

initially the DJI Matrice 600 Pro. However, this UAV platform was discontinued and replaced 

with the newer DJI Matrice 300 RTK. After assessing and comparing the best commercial and 

industrial UAVs in the market, the final platform recommended was the DJI Matrice 300 RTK. 

This UAV provides a substantial flight time of approximately 33 minutes, with a maximum 

payload of 2.7 kg, exceeding the payload needed for this project and provides the most stability 

under windy conditions of up to 54 kph.(24)  

 

Imaging System 

As for the imaging system payload, the Zenmuse H20, illustrated in Figure 21, was the add-on of 

choice.  



40 
 

 

Figure 21. Photo. Zenmuse H20 – Triple-sensor imaging system.(15) 

The Zenmuse H20 imaging system weighs 678g and provides far more capabilities than any other 

regular camera. This imaging system has two cameras: the first is a wide-angle camera with a 

display field of view (DFOV) of 82.9° and resolution of 12 MP, while the second camera is a 20 

MP Zoom camera with 23x hybrid optical zoom, up to 200x digital zoom, night mode and 4K 

video resolution. This imaging system also has an integrated laser rangefinder (LRF) that measures 

the distance to an object up to 1200 m away. This imaging system also has advanced features that 

further extend its utility, such as AI Spot-Check (which automates routine inspections using the 

camera’s onboard artificial intelligence), High-Res Grid Photo, PinPoint (which allows GPS 

coordinate tagging of objects on the fly), Smart Track (which identifies and follows moving 

subjects using AI and the auto-zoom function, while continuously acquiring the subject’s dynamic 

location).(24) 

 
Ground Station 

The recommended hardware setup for the ground station is a computer that allows for high 

computation capacity. The computer should have a Graphics Processing Unit (GPU) to conduct a 

fast classification of images. GPUs accelerate the computational capabilities of a normal computer 



41 
 

and can run multiple processes at the same time. Since the neural network classification is 

developed in MATLAB, the ground station should have a recent version of MATLAB software 

installed. In addition to the MATLAB software, the MATLAB neural network packages for 

AlexNet, ResNet50, or GoogLeNet should be added. 

As for the graphical user interface (GUI) application, the software needed is Python. Within 

Python, the GUI’s foundations are PyQT5 (version 5.15.4 or latest), Tkinter (version 8.6.11), and 

the ArcGIS API (version 4.20). PyQT 5 is a library that implements 35 modules and high-level 

APIs that enable Python to be used as an application development language. Additionally, PyQT5 

is the library used to create the GUI and all of its functionalities. Similar to PyQT5, Tkinter also 

provides GUI solutions.  

A bash script was created to automate the installation of all the packages and dependencies 

necessary to run the application and the classification network for this project. 

 
SYSTEM SOFTWARE 

The system software consists of three main components, which are:  

1) Convolutional Neural Network Classifier 

2) Python API and ArcGIS Software 

3) RTMP Live Stream Server 

Each of these software components is discussed in detail in the following subsections.  
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Convolutional Neural Network Classifier 

Convolutional Neural Networks were used to create the disaster assessment classifier. The CNN 

selection was based on the network’s ability to produce the most efficient accuracy while 

minimizing the computational complexity. Other networks with denser architectures may produce 

slightly better accuracy. This performance difference might not be statistically significant 

compared to other less dense CNN accuracies, and it comes at the cost of more computational 

complexity. Three different CNN architectures – AlexNet, GoogLeNet, and ResNet50 – were 

evaluated in the project to find the optimal architecture for this application. These classifiers were 

trained to classify six different categories of damage: damaged road, clear road, blocked road, boat 

in the road, fallen power lines, and flooded road. 

 

The classification performance was optimized by adjusting the training parameters (batch size, 

epoch number, loss functions, and learning rates). The need to structurally change the network 

architecture occurred when it became clear that the training parameters were no longer improving 

performance for classification accuracy. Due to the small training and testing dataset size, the first 

step was to use transfer learning techniques to repurpose pre-trained neural networks. Transfer 

learning improves networks’ accuracy. However, due to the small size of the dataset used, cross-

validation was also used to avoid overfitting. Once these methods were applied, the training 

parameters were reassessed. 

 

Python API and ArcGIS Software 

ArcGIS is geographical information software used to map, visualize, and analyze geospatial 

information. The software allows for the creation and implementation of reliable maps based on 
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layering information. This layering allows the creation of complex maps where data can be studied 

further. In this project, ArcGIS is leveraged to create maps with exact pinpoints of the locations 

where the UAV identified disaster-damaged roads, as illustrated in Figure 22.  

 
Figure 22. Map. ArcGIS web map with tagged disaster-damaged roads 

Each pinpoint shows the user the latitude, longitude, and type of damage associated with a specific 

location. These features are illustrated in Figure 23. Furthermore, these maps can be accessed 

online and viewed by GDOT personnel anywhere and anytime, improving accessibility to this 

critical information. 
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Figure 23. Map. Information tag for each disaster-damaged road on the webmap 

 

The ArcGIS software also allows the automation of map development in their online ArcGIS 

platform through a Python API. The API is utilized heavily in developing the GUI to automate 

workflows and speed up data retrieval. The API is the backbone of the GUI since it allows for a 

single environment to handle the classification of data and the development, modification, and 

maintenance of maps. 

 

RTMP Live Stream Server 

RTMP stands for Real-Time Messaging Protocol. The server allows for high-speed transmission 

of video, audio, and image data from an encoder to a server. Adobe originally developed RTMP 

to work with Adobe Flash Player. The DJI Matrice 300 RTK system can stream a video feed using 

RTMP to any RTMP server. Users can use this live stream to follow the operation closely from a 

remote location. The RTMP implementation requires setting up an RTMP server or using pre-

existing RTMP servers such as YouTube or others. In all cases, the user must enter a unique 
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streaming key into the UAV controller and ensure that the UAV has connectivity to allow live 

streaming.  

 

Figure 24 showcases an example of the implementation of the YouTube link and unique key 

necessary to start a live stream with the DJI Matrice 300’s controller. It is worth noting that the 

original video’s metadata is overwritten by YouTube’s metadata, therefore losing the original 

geolocation data. Consequently, it is necessary to use a private RTMP server for this purpose. 

 

 
Figure 24. Photo. YouTube livestream link and unique key for UAV livestream 
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IMAGE LIBRARY 

To develop an effective neural network classification, a large set of images representing the 

different categories is needed to train the neural network classifier. Therefore, a library of disaster-

damaged roads was created since such a library did not exist previously. This library is composed 

of six different classes of damage encountered by the Georgia Department of Transportation across 

the state during and after natural disasters. The categories included in the library are the following: 

Damaged Roads, Clear Roads, Blocked Roads, Boats in Roads, Fallen Power Lines, and Flooded 

Roads. The images inside the library are captured from a bird’s eye view or high camera angle to 

resemble what a flying UAV would capture in real-time. The library contains around 600 images, 

with each category containing 80 to 100 images. 

 

Damaged Roads 

The Damaged Roads classification is exemplified by the encountering of potholes, cracked 

concrete, and concrete dislocation. Figure 25 showcases a sample of a damaged road image that is 

fed to the classification neural network to train it. 

 
Figure 25. Photo. Disaster damaged road – Library sample image.(30) 
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Clear Roads 

The Clear Roads classification is exemplified by the lack of any damage, obstruction, flooding, or 

fallen power lines. This classification focuses on the assessment of a functional road. Figure 26 

showcases a clear road image sample fed to the classification neural network to train it. 

 
Figure 26. Photo. Clear road – Library sample image.(31) 

 

Blocked Roads 

 
The Blocked Roads classification is exemplified by the obstruction of any kind to a road, except 

for boats. This classification focuses on the assessment of a road that does not allow proper passage 

and mobilization. Figure 27 showcases a blocked road image sample fed to the classification neural 

network to train it. 

 
Figure 27. Photo. Disaster blocked road – Library sample image.(32) 
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Boats in Roads 

The Boats in Roads classification is exemplified by the obstruction of a road by a boat. Similar to 

Blocked Roads, this classification focuses on assessing a road that does not allow proper passage 

and mobilization. Figure 28 showcases a sample of an encountered boat in a road image that is fed 

to the classification neural network to train it. 

 
Figure 28. Photo. Boat in a road – Library sample image.(33) 

 

Fallen Power Lines 

The Fallen Power Lines classification is the encounter of fallen power lines on or near roads. High 

winds or fallen branches usually cause these fallen power lines. Figure 29 showcases a fallen power 

line image sample fed to the classification neural network to train it. 

 
Figure 29. Photo. Fallen power lines – Library sample image.(34) 
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Flooded Roads 

The Flooded Roads classification is the encounter of extreme amounts of water on roads. These 

roads are deemed inaccessible to rescue teams due to the high water levels. Figure 30 showcases 

a sample of a flooded road image fed to the classification neural network to train it. 

 
Figure 30. Photo. Flooded road – Library sample image.(35) 
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CHAPTER 4. GRAPHICAL USER INTERFACE APPLICATION 
 

GUI APPLICATION DIAGRAM 
 

As previously mentioned, the project incorporates a graphical user interface (GUI) developed 

using a Python API that automates the creation of maps and layers. The GUI application creates a 

centralized system in which the user has multiple options to create or modify maps and handle data 

collected by unmanned aerial vehicles. Figure 31 illustrates the complete GUI system diagram and 

its functionality. 

 
Figure 31. Chart. Complete GUI system diagram 
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LOGIN AND LOGOUT BUTTON 

The first aspect that the GUI implements is the ability to log in and out of the application. The 

login credentials are the user’s online ArcGIS account credential since the ArcGIS API is the 

backbone of the application, and ArcGIS is where the disaster-damaged road maps are created. 

Figure 32 shows the main page where the login process starts. 

 
Figure 32. Photo. GUI login window 

 
Once the “Login” button is clicked, the user is asked to enter a username and password, as seen in 

Figures 33 and 34. 
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Figure 33. Photo. GUI prompt window for ArcGIS account username  

 
Figure 34. Photo. GUI prompt window for ArcGIS account password 

 

If the user enters an incorrect username or password, the application will indicate that the process 

was unsuccessful and promote the user to try again, as shown in Figure 35.  
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Figure 35. Photo. GUI window for login error  

On the other hand, the application’s main menu reflects a successful message if the login is 

successful, as shown in Figure 36. Finally, the user can also log out from the system by clicking 

on the top left button in the GUI. 
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Figure 36. Photo. Application main window 

 

VIEW ARCGIS DATA BUTTON 

After successfully logging in, the user is presented with the options illustrated in Figure 37. The 

user has the option of viewing all of their account data stored in their online ArcGIS account. Once 

clicked on, this button will take the user to a second window with data viewing options from which 

the user can pick. This is illustrated in Figure 37. 
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Figure 37. Photo. Data search menu window from view ArcGIS data 

In the second window, the user is introduced to four options, which are “Return”, “All Content”, 

“Search by Keyword”, and “Search by Title”. The “Return” button allows the user to return to the 

main menu window. The “All Content” Button enables users to see all their existing content in 

their ArcGIS account, as illustrated in Figure 38. 
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Figure 38. Photo. All ArcGIS account content window 

Additionally, this window allows the user to grab the selected service’s Item ID with the “Copy 

ItemID to Clipboard” option. This feature will be necessary when the user wants to open webmaps 

directly from the GUI. It is worth noting that the GUI will only open webmaps and not other 

features such as Feature Layers.  

 

Once back to the previous data search window in Figure 37, the user can also search content in 

their account through keywords or item titles. These implementations are accessed through the 

“Search by Keyword” and “Search by Title” buttons. Figures 39 and 41 showcase the prompt 

window for searching the data using a keyword and title, respectively, while Figures 40 and 42 

show the search results for both search techniques. 
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Figure 39. Photo. Keyword search prompt window for ArcGIS account content 

 

Figure 40. Photo. Search results window for keyword content search 
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Figure 41. Photo. Title search prompt window for ArcGIS account content 

 

Figure 42. Photo. Search results window for title content search 
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Similarly, both these options show windows that have the option to copy an item’s ID to the user’s 

clipboard. The options presented in this section allow the user to move their data around in ArcGIS 

without switching environments. 

 

OPEN WEBMAP WITH ITEMID BUTTON 

The next feature implemented in the GUI is the ability to open webmaps directly from the GUI. 

The user can input a webmap’s item ID by clicking on this button, so the GUI opens the set web 

browser to showcase a webmap with layers. If the webmap’s item ID for a specific map is not 

known, it can be obtained by copying it to the clipboard by searching the ArcGIS data through the 

process explained in the previous section. This process of retrieving the webmap item ID and 

accessing it is illustrated in Figures 43, 44, and 45. 

 

Figure 43. Photo. Copy ItemID to clipboard from ArcGIS account content window 
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Figure 44. Photo. Paste ItemID from clipboard to map ID prompt window  

 

 
Figure 45. Map. ArcGIS webmap opened using the “Open Webmap with ItemID” button 
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This feature is particularly useful for anyone who only wants to visualize the maps/layers. The 

user can open any webmap and obtain any webmap’s item ID directly through navigating the 

application. 

 

CLASSIFY DATA BUTTON 

Once back to the main application window in Figure 36, the essential feature of the application is 

classifying the data obtained from the UAV missions. When the “Classify Data” button is clicked, 

a second window is opened where there are three options from which the user can choose to 

classify the data and map the classification once it is completed. Figure 46 shows the second 

window with the classification and data mapping options. 

 
Figure 46. Photo. Data classification and mapping window 
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Classify Data Only Button 

The “Classify Data Only” button enables the user to classify images from a Google Drive folder 

or any other file system the ground control and processing server uses, as seen in Figure 47. The 

input folder selected should have the sampled images of the unmanned aerial vehicle’s mission 

video stream. After selecting the input folder, the user is prompted to select where the classification 

results should be saved, as seen in Figure 48. This process can be automated through a task 

scheduler. 

 
Figure 47. Photo. Data selection for classification 
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Figure 48. Photo. Folder selection to save classification output and results 

The classification results will include CSV and XLSX files summarizing all the classification 

results with their associated geo-tagging information, as well as a zip file with the disaster-

damaged classified images, as seen in Figure 49.  

 

Figure 49. Photo. Saved data and results in user selected location 
 

 



64 
 

Moreover, the application will notify the user whether the classification was successful without 

the need to access the files to inquire about that information, as seen in Figures 50 and 51. 

 

 
Figure 50. Photo. Successful classification window  

 

 
Figure 51. Photo. Unsuccessful classification window 
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Classify Data and Modify Maps Button 

On the other hand, the “Classify Data and Modify Maps” button enables the user to perform the 

same data classification process as described in the previous section. However, it also provides the 

option of creating a new webmap, overwriting an existing webmap, or appending a previously 

created webmap with the information obtained from the classification process. These options are 

illustrated in Figure 52.  

 
Figure 52. Photo. Webmap modification menu window after data classification 

 

The “Create New Map” button simply creates a new webmap for the user in their ArcGIS account. 

The other two options, “Overwrite a Map” and “Append Data to a Map”, prompt the user to select 

an existing ArcGIS webmap. The GUI enables the user to browse through all the existing ArcGIS 

webmaps and select the webmap that needs to be modified. This process is illustrated in Figures 

53 and 54. In those figures, the GUI windows shown, as a result of choosing to overwrite a map 
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or append information to a map, resemble those of the “View ArcGIS Data” button from the main 

window since both options require accessing data in the ArcGIS account. 

 
Figure 53. Photo. Webmap search window after data classification and selection of webmap 

modification 
 

 
Figure 54. Photo. Webmap selection for modification of data 
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After selecting the desired webmap to be modified, the “Change Selected Map” button is clicked 

to initiate the modification. This will prompt the user to select the classification output CSV file 

obtained from the classification process, as seen in Figure 55. 

 
Figure 55. Photo. User selection of data to modify webmaps 

 
When the modification process completes, the main window will display an appropriate message 

for the user, as illustrated in Figure 56. It is also worth noting that the “Overwrite a Map” button 

completely overwrites the webmap’s layers and adds “Overwritten” to the webmap’s title. In 

contrast, the “Append Data to a Map” button adds more information to the webmap’s data layers 

and adds “New Data Appended” to the webmap’s title. The resulting maps can be viewed using 

the “View ArcGIS Data” button, as depicted in Figure 57. 
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Figure 56. Photo. Data successfully overwritten window 

 

 
Figure 57. Photo. Overwritten map displayed in the content of the user’s GUI account  
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Use Previously Classified Data and Modify Maps Button 

The “Use Previous Classified Data and Modify Maps” button enables the user to use previously 

classified data to modify webmaps in ArcGIS. This feature implements the same options as the 

“Classify Data and Modify Maps Button” regarding what type of modification the user can do, as 

seen in Figure 52 before. The “Use Previous Classified Data and Modify Maps” and “Classify 

Data and Modify Maps” buttons’ follow the same process; the only distinction is the input source: 

the former uses already classified data to modify a map, while the latter classifies the data and uses 

these results to modify a map. 

 

DOWNLOAD YOUTUBE VIDEO BUTTON 

The main application window, illustrated in Figure 36, allows downloading videos initially 

streamed into the YouTube platform with the RTMP communication protocol. This feature was 

added to demonstrate that RTMP streamed video feed can be accessed, classified, and added to an 

ArcGIS map. YouTube is used as an RTMP existing server to demonstrate this feature, which can 

be easily reconfigured to connect to any other RTMP server. This feature checks the existing 

playlists of a predetermined YouTube account set up internally. This process is illustrated in Figure 

58.  
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Figure 58. Photo. Selection of available YouTube playlists 

 
Once the desired playlist is selected, a second window will appear. In this window, all the videos 

corresponding to that playlist are listed. To download a video, it first has to be selected, and then 

the user simply clicks on the “Download Video” button, as illustrated in Figure 59. 

 
Figure 59. Photo. Selection of available videos found in the YouTube playlist 
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After clicking the “Download Video” button, the GUI will prompt the user to select where the 

video will be saved. This feature allows for the navigation of the file system to select where this 

video will be saved. This process is illustrated in Figure 60. 

 
Figure 60. Photo. Directory selection to save a downloaded video 

 
Once the destination folder where the video will be saved is selected, the application will download 

the video and open up another window indicating whether the download has successfully been 

completed or not, as depicted in Figure 61. Finally, if the video was downloaded successfully, it 

will appear in the desired directory, and the user will be able to access it when necessary, as shown 

in Figure 62.  
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Figure 61. Photo. Video successfully downloaded window 

 

 
Figure 62. Photo. Downloaded YouTube video 
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Sample Video Button 

The “Sample Video” button enables the user to sample any video provided by the UAV (or any 

other video source). When used, this feature prompts the user to select the video that needs to be 

sampled and the destination directory where these samples will be saved, as illustrated in Figures 

62 and 63.  

 

 
Figure 63. Photo. Directory selection to save sampled frames from video 

Currently, the sampling period is set to 40 frames; however, it can be reconfigured if needed. When 

the video is selected, the application will start sampling the video and saving the frames to the 

previously selected directory, as depicted in Figure 64.  
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Figure 64. Photo. Output directory with the sampled video frames 

Once the sampling process is completed, the application will open a window indicating the 

completion of the sampling process, as depicted in Figure 65. For automation purposes, the process 

of downloading a video from an RTMP server, saving it locally, and sampling it can be automated 

through a task scheduler. 

 
Figure 65. Photo. Video successfully sampled window 
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CHAPTER 5. CLASSIFICATION RESULTS AND DISCUSSION 
 

EXPERIMENT DESCRIPTION 

For testing the effectiveness of classifying disaster-damaged roads, a total of three different 

convolutional neural networks (CNNs), AlexNet, GoogLeNet, and ResNet50, were investigated. 

Parameters, such as mini-batch size, max epochs, and learning rate, were set for each network. The 

mini-batch size defines the number of samples run in an epoch. The number of epochs is a 

hyperparameter that sets how many complete trials the network must complete during training. 

The learning rate in a neural network controls the amount of change in the model whenever the 

weights are updated, determining how quickly or slowly a neural network model learns.  

All networks were tested with a mini-batch size of 64, 15 epochs, and a learning rate of 10−4. 

Additionally, all networks required a specific image size to work properly; in all cases, the input 

was 224⨯224⨯3. To accommodate this requirement, a MATLAB function was created to resize 

all input images. Once the resizing was complete and the parameters tuned, transfer learning was 

applied to the networks. Transfer learning is a machine learning process of selectively changing 

the output categories of a pre-trained classification network to repurpose and customize the 

classification to classify a different set of tasks. For example, a network trained on a large dataset 

to classify different types of plants can be repurposed to classify a smaller dataset of animals. To 

achieve this result, the network’s knowledge obtained by being pre-trained with a large dataset is 

kept unchanged in all the network layers except the final few layers. The last few layers of the 

network are retrained to avoid overfitting and obtain more specific features from the smaller 

dataset. Transfer learning addresses the time constraints of building large data sets and performing 

supervised learning by redirecting pre-trained networks' classification layers. Furthermore, 

transfer learning tackles the hardware costs, e.g., GPU, necessary to perform high computational 
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analysis with large datasets, considering that only the last layers need retraining when repurposing 

a network.(9) These unique advantages are integral to the functionality and competitiveness of 

classification systems, lowering hardware requirements while improving capabilities. 

The networks were tested and validated using the dataset from the image library compiled for this 

project once the transfer learning process was completed. In this step, 4-fold cross-validation was 

used by partitioning the dataset into four subsets. Cross-validation is a machine learning validation 

technique used to evaluate the performance of the CNN by averaging the performance of the 

network using different subsets of the dataset, in a very systematic way, to obtain true network 

performance. This method is also useful for avoiding overfitting issues due to training and testing 

on a limited dataset of disaster-damaged roads. When performing k-fold cross-validation on a 

dataset, the method randomly divides the data into k portions. In the case of this work, the dataset 

was divided into four folds. Then, three folds are selected to be part of the training and validating 

dataset, and the remaining fold is left to be used as the testing dataset. This procedure is repeated 

four times to allow each portion to be used as a test dataset. Therefore, the network is trained and 

analyzed four times. The analyzed results (F1 score, Precision, Recall) of all the training and 

testing datasets are then averaged by obtaining their mean. This method allows for a less biased 

model. 

 

CLASSIFICATION QUALITY MEASURES 

The primary measure of quality when considering classification performance is the accuracy of 

the classified categories. Numerous image classification assessment measures exist to objectively 

calculate the classification performance. Due to the nature of the work and the limitations of a 

small dataset, the original images are run through cross-validation and transfer learning processes 
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to avoid overfitting. The classification results are then analyzed with four quantitative methods. 

This particular work utilizes precision, recall, specificity, and F1 score analysis methods to ensure 

the requirements of proper classification are met.(8) 

 

Classification Outcomes 

To be able to define these measures, the classification outcomes need to be defined first.  There 

are four possible category classification accuracy outcomes: true positive (TP), false positive (FP), 

true negative (TN), and false-negative (FN). A true positive outcome results from the CNN's 

classification output of an image matching that image’s actual category. Furthermore, a true 

negative is the CNN correctly classifying an image as not part of another category other than its 

own. On the other hand, a false positive is the CNN classifying an image as belonging to a category 

that is not the image’s actual category. Finally, a false negative means incorrectly classifying the 

image as not belonging to its actual category.  

 

Quality Measure – Recall 

Recall, also called sensitivity, refers to the CNN's ability to correctly classify images of a category 

as part of that category. This method is designed to compare the capability of a network to discern 

images belonging to a specific category properly. It functions by calculating the number of true 

positives classified cases divided by all the true positives and false negatives classified, as 

indicated in eq. 1. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

      (1) 
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Quality Measure – Precision 

Precision refers to the network's classification accuracy of positive cases for each existing 

category, as shown in eq.2. This measure demonstrates the percentage of true positive 

classifications out of all the positive classifications obtained by the network in each category. 

 

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

     (2) 

 

Quality Measure – F1 Score 

The F1 score is the harmonic mean between statistical precision and statistical recall, as shown in 

eq.3. This measurement is better suited for measuring incorrectly classified cases by a network 

and is represented by a number between 0 and 1. The F1 score also proves helpful when there is 

an imbalanced category distribution in the dataset. 

 

𝐹𝐹1 = 2(𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)(𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅)
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+12(𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹)

   (3) 

 

Quality Measure – Specificity 

Finally, specificity refers to the percentage of images correctly classified as not part of a category. 

This allows us to assess how the network performs at deciding if an image is truly part of a category 

or not. The formula to find specificity is demonstrated in eq.4. 

 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑖𝑖𝑆𝑆𝑖𝑖𝑅𝑅𝑖𝑖𝑆𝑆𝑆𝑆 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

     (4) 
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SIMULATION RESULTS AND DISCUSSION 
 

The results presented in this section were produced from running computer simulations of the 

classification neural networks. The referenced classification measures of F1 score, precision, 

specificity, and recall were chosen due to their capabilities in assessing vital quality aspects of the 

image classification achieved by the networks tested. Though each measure does not show the 

complete picture, presented together, they allow for a better understanding of the results. 

Moreover, these methods are four of the most commonly used and referenced classification 

measures, allowing replicability and comparability with other studies. 

 

Two Categories Classification 

In the first attempt to classify the dataset, the dataset was segmented into two categories: damaged 

roads and clean roads. Using these two categories, the pre-trained networks were repurposed 

through transfer learning and then tested to assess the viability of this classification. The 

classification accuracy results obtained from all the networks exceeded 99%, indicating that the 

process for transfer learning pre-trained networks to detect damaged roads is viable. Figure 66 

highlights a sample of the classification results using this two-category classifier. 
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Figure 66. Photos. Two category neural network classification output of disaster damaged 
roads 

 

Six Categories Classification 

After validating the viability of the process, the dataset was segmented into six different classes:  

Damaged Roads, Clear Roads, Blocked Roads, Boats in Roads, Fallen Power Lines, and Flooded 

Roads. As previously mentioned, a total of three different CNNs (AlexNet, GoogLeNet, 

ResNet50) were investigated. The mean F1 score, recall, specificity, and precision were calculated 

after applying the four-fold cross-validation. The classification quality measure results for each 

network are presented in Tables 10, 11, and 12. 
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Table 10. AlexNet classification results 

Network Accuracy: 74.1% 

Classes Precision Recall F1 Specificity 

Blocked Rd 0.375 0.300 0.333 0.847 

Boat in Rd 1.000 1.000 1.000 1.000 

Clear Rd 1.000 1.000 1.000 1.000 

Damaged Rd 0.800 0.400 0.533 0.977 

Flooded Rd 0.818 1.000 0.899 0.955 

Power Lines 0.600 0.900 0.720 0.864 
 

 

 

Table 11. GoogLeNet classification results 

Network Accuracy: 68.5% 

Classes Precision Recall F1 Specificity 

Blocked Rd 0.359 0.225 0.277 0.886 

Boat in Rd 0.935 0.975 0.955 0.945 

Clear Rd 0.845 1.000 0.916 0.979 

Damaged Rd 0.609 0.500 0.549 0.909 

Flooded Rd 0.731 0.527 0.613 0.967 

Power Lines 0.568 0.925 0.704 0.818 
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Table 12. ResNet50 classification results 

Network Accuracy: 70.4% 

Classes Precision Recall F1 Specificity 

Blocked Rd 0.338 0.125 0.182 0.932 

Boat in Rd 0.955 1.000 0.977 0.977 

Clear Rd 0.803 1.000 0.891 0.959 

Damaged Rd 0.733 0.550 0.628 0.977 

Flooded Rd 0.866 0.723 0.788 0.977 

Power Lines 0.534 0.975 0.690 0.818 
 

The best performing network in terms of average accuracy was AlexNet, with an achieved 

accuracy of 74.1%. Additionally, AlexNet was the fastest network to train, thus requiring less 

computational power. Even though AlexNet produced the highest accuracy in this experiment, the 

more complex CNNs, such as GoogLeNet and ResNet50, would have provided much higher 

classification accuracies with larger training and testing datasets.(36) The fact that the image library 

had a relatively small number of images (especially after segmenting it into six categories) limited 

the ability of these neural networks to converge, which resulted in lower accuracies. 

 

When assessing the Recall of each category across all CNNs tested, it becomes evident from the 

recall measurements obtained in the Blocked Road and Damaged Road categories that the 

networks need additional training data. These measurements show that the networks are getting 

confused between both these categories, thus lowering the overall accuracy of the network. 

Extending the database would show clear improvement that would get the classification closer to 

actual accuracy. 
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It is also notable that the Precision across the networks also showed that the Blocked Roads and 

Damaged Roads produced low measurements. The percentage of positive identifications that were 

correct was low. This again shows that the networks need more training with more images for 

these classes to learn more features and correctly differentiate between them.  

 

Figures 67, 68, and 69 display the confusion matrices for AlexNet, GoogLeNet, and ResNet 50, 

respectively. The blocked road category was the least accurately classified category across all three 

networks, mainly due to the small size of the dataset. 

 

 

Figure 67. Graph. AlexNet confusion matrix 
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Figure 68. Graph. GoogLeNet confusion matrix 

 

Figure 69. Graph. ResNet 50 confusion matrix 
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CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 
 

CONCLUSION 

An unmanned aerial vehicle-based automated disaster assessment system was developed to assess 

damage caused by natural disasters. This system captures bird’s eye view high-definition videos 

of disaster impacted areas. These videos are then sent to a ground station where they are sampled 

and classified, in real-time, using Convolutional Neural Networks (CNNs). This system also 

automatically tags the classified disaster-damaged roads on an ArcGIS map to provide real-time 

geolocation feedback of the damage caused by the disaster. Moreover, the system provides live 

streaming of the UAV’s video feed to an RTMP server, enabling the first responders to assess 

damages.  

 

To develop this system, a detailed comparative analysis of some of the leading commercial and 

industrial UAV platforms were conducted. This analysis provided a list of recommendations to 

different UAV platforms that are good candidates for this project. However, the final UAV 

platform recommendation for this project was the DJI Matrice 300 RTK. The analysis concluded 

that the new DJI Matrice 300 RTK exceeds the expectations compared to the DJI Matrice 600 Pro 

in key areas such as wind speed tolerance, range, speed, flight time, and reliability. Furthermore, 

the Matrice 300 RTK applies newer AI-based technology such as Smart Track and Live Mission 

Recording, enabling the user to have an automated system that returns accurate data for mission 

completion. The key reason this platform was selected as the final recommendation is its 

impressive ability to resist wind speeds up to 54 kph or 15 m/s, which surpassed all other UAV 

platforms analyzed. 
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A customized GUI application was developed using Python and MATLAB software to automate 

and centralize the operation of this system. The application included managing, sampling, 

classifying, and ArcGIS map tagging of the UAV-generated video streams. This application also 

provided some flexibility to customize the operating settings of this system.  

 

Due to the particular nature of this application, field tests were not viable. Therefore, the system 

was extensively simulated and tested using a compiled library of images captured from previous 

natural disasters. The image library was classified into six categories: damaged roads, clear roads, 

blocked roads, boats in roads, fallen power lines, and flooded roads. A total of three different CNN 

(AlexNet, GoogLeNet, ResNet50) classifiers were investigated after applying transfer learning and 

utilizing four-fold cross-validation. AlexNet achieved the highest accuracy of 74.1%. Even though 

AlexNet produced the highest accuracy in this experiment, the more complex CNNs such as 

GoogLeNet and ResNet50 would have provided much higher classification accuracies given larger 

training and testing datasets. 

 

RECOMMENDATIONS FOR FUTURE WORK 

The major area that could be improved is the image library. The fact that this library had a relatively 

small size impacted the classification accuracy. Not only this, but also since this library is compiled 

of images of previous natural disasters, there was no consistency in the quality of images, which 

also impacts the classification accuracy. Therefore, the image library could be improved through 

the utilization of the developed system to gather higher quality and consistent images.  Eventually, 

these newly collected images could be used to retrain the classifier to improve its accuracy. Finally, 

after this system has been in use for a while, the GUI application could be further customized to 

include more features that streamline the functionality of this system.  
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